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On dimensional analysis 
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Abstract. Comments are made upon aspects of dimensional analysis illustrating matten 
such as the distinction in a definition between a quantity and its measure and the effect upon 
formulation of the analysis of approximate modelling, of the uncoupling of equations and of 
the inclusion of thermodynamic properties as variables. The status of angle and of amount 
of substance as primary quantities is discussed. A treatment of unit conversion factors is 
given. 

1. Introduction 

The Iiterature of dimensions and units is voluminous, though much of it excludes or 
barely touches upon dimensional analysis which is the prime concern of this paper. The 
more elementary treatments of dimensional analysis too frequently can be faulted, 
whilst the specialised monographs often leave questions unanswered. Detailed scrutiny 
of many expositions makes it difficult to advance a defence against the commonly made 
claim that dimensional analysis is only effective because the correct answer has 
previously been otherwise obtained. When the position has been reached of pub- 
lication of an unnecessarily complicated derivation which in addition is not soundly 
based, arriving at an answer that is incorrect, then the time has come to reconsider; this 
is what this paper sets out to do. 

But that is not all; as Jeffreys pointed out (Jeffreys 1943, see p 839, LI 22-5), too 
often difficulties arise because of semantic problems. On other occasions difficulties can 
be due to the use of definitions that are lacking in rigour, such as confusion between the 
use of mass in a momentum context and in a thermal internal-energy context as a unit of 
amount of substance. Or again, and this is most common in philosophical writings 
(Plotinus 1968 (Time and Eternity), Waismann 1968 (Analytic-synthetic)), difficulties 
have arisen because the careful distinction , necessary in physics, between the definition 
of the nature of a physical quantity and the definition of its measure is not made. 
Definitions making this distinction are given here. 

In this paper the following points are considered: 
(a) The fundamental definition of basic quantities such as length and time. 
(b) The necessity of assigning dimensions to angle and to amount of substance. 
(c) The units of certain molecular quantities and the corresponding unit conversion 

(d) The choice of variables based upon the physics of a problem and their total 

(e) The questionable use of directional concepts in dimensional analysis and the 

factors. 

number as required by the tenets of thermodynamics. 

direct relevance of the uncoupling of governing equations. 
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76 J C Gibbings 

(f)  The Rayleigh-Riabouchinsky problem. 
(8) The relation between the number of base quantities and the number of unit 

conversion factors. 

2. The definitions of physical quantities 

It has been mentioned how a difficulty has arisen amongst philosophers which appears 
to be due to lack of distinction between the definition of a quantity and the definition of 
its means of measurement. There is a difference in approach between the ‘philosopher’ 
and the physicist because the latter is faced with the reality of having to measure. A 
particular example arises in the definition of time: on the basis that, here, science can aid 
philosophy, this is now discussed. 

Consider as a preliminary the elementary concept of extension+. We can appreciate 
position by our senses; we can observe the absence of sameness in position between two 
positions. This difference is defined as the concept of extension. The definition of its 
numerical measure must then be a consequence$; it is measured by counting a set of 
standard lengths. The precision is controlled by the size of the smallest standard length; 
in the language of physics, by the degree of division of the standard metre. 

This primary definition of extension must embrace the requirements of the secon- 
dary definition of length measurement. That is why in this definition of extension one 
has to recognise that objects must be placed to terminate an extension; the present 
‘absence of sameness in position’ must be in relation to objects occupying the two 
positions. Then a ‘position’ in empty space is an invaluable analytical abstraction as is 
‘infinity’ or a ‘point’. Again the relation between two objects that measures a length can 
be determined by relating each of these objects to a third§; all physical measurement is a 
matter of comparison, and the observer, having made the measurement, is not 
concerned that it would change if he wallked away. 

Amongst philosophers difficulty has existed over the definition of time. Plotinus 
(1968 (Time and eternity)) criticised Aristotle’s definition as being ‘circular’ in that it 
relied on the definition of motion11 which in turn relied on the definition of time. This 
difficulty is still discussed (Waismann 1968, (Analytic-synthetic)). However, an 
approach analogous to that just given for extension and for length seems fruitful. 

For, similarly, we can appreciate an accumulation of experience; then we can 
appreciate an addition of experience. Thus we can appreciate a difference in a total of 
experience. This difference can now be defined as time; it is not then a definition linked 
with motion. 

For amplification, consider that an experimenter ‘A’ recognises a ‘point’ in time by 
observing one or more events, indicated by ‘a’, up to that time, and others after it. Then 
experimenter ‘B’ recognises the same point in time by observing ‘b’ which may contain 
some or all of ‘a’  so that ‘A’ and ‘B’ can agree on this ‘point’ in time. Then experimenter 
‘C’ recognises the same ‘point’ in time by observing ‘ c ’ .  If ‘c ’  contains some or all of ‘b’ 

t Aphysicist usually calls this ‘length’, whereas the philosopher uses the word ‘length’ to denote the numerical 
measure. 
i: This approach is the reverse of that proposed by Taylor (1974, p 2) who says that ‘it is important that the 
concept. . . as determined from the rules for its measurement. . . ’. 
0 Here there is an analogy with the zeroth law of thermodynamics (Gibbings 1970). 
1 1  It seems that some philosophers use motion and time as synonyms; to a physicist, motion is the relation 
between space and time measured, for example, as a velocity. 
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then ‘B’ and ‘C’ agree on the location of the ‘point’ in time; ‘c’ may contain none of ‘a’ 
but still ‘C’ and ‘A’ can agree?. The present definition seems to overcome further 
philosophical difficulties concerning the zero extent of ‘past’, ‘present’ and ‘future’ 
(Augustine 1961)$. For if ‘present’ is regarded as synonymous with a prescribed ‘point’ 
in time, it becomes the useful analytical abstraction that a ‘point’ in extension is. As 
before, the numerical measure of time then follows; in physics it is measured by 
counting what are assumed to be identical events. 

Another definition is worth recalling; it is that for mass given in Gibbings (1970). 
Unlike those above for extension and time it is analogous to those for other physical 
properties such as viscosity, conductivity and so on (Gibbings 1970, ch 13). In contrast, 
the above definitions for extension and time are analogous to that for internal energy 
(Gibbings 1970, pp 70-1, Keenan 1957). 

3. The use of units conversion factors 

Dimensional analysis is founded on the principle of equality of the dimensional 
structure of those terms in an equation that are arithmetically summed. A us’e of 
dimensions that are related by units conversion factors requires the appearance of these 
factors in the equations. This would suggest that these factors should also appear as 
variables in a formulation of a dimensional analysis: problems arise over the necessity 
and choice of these factors. 

The definition of measure of an area a is the arithmetic sum of unit squares: then we 
say that the area of a square is given by the square of the side, I ,  or a = 1 2 .  But, in 
general, we should write 

2 a =Aol . 
To explain the nomenclature used here consider two cases: 

(a) where a is measured in acres and 1 is measured in yards, then: 
(i) A .  has units i.e. acre (yard)-’; 

(ii) A. has dimensions i.e. area (length)-2; 
(iii) A. has the numerical value of 1/4840. 

(b) where a is measured in metre’ and I is measured in metres, then: 
(i) A. has no units; 

(ii) A. has no dimensions; 
(iii) A .  has the numerical value of 1.0. 

Jeffreys has pointed out in a similar context (Jeffreys 1943, p 840) that we could 
alternatively fix the dimensions of 1 and of A .  so that those of a would follow. Or, 
again, the numerical value of A.  can be specified; an example of this arises in 
magnetism, where, in the SI system, the value 4 ~ 1 0 - ’  is assigned to F ~ .  

It is seen that A .  is a units conversion factor. The procedure (b) just described is 
commonly adopted, but, because of the assignment of a numerical value of unity, it can 
readily go unrecognised. As an example where difficulty has arisen consider the 
quantity ‘angle’. 

+ Again there is an analogy with the statement of the zeroth law of thermodynamics. 
Saint Augustine poses the problem, asking ‘. . . the present, which we found was the only one of the three 

divisions of time (past, present, future) that could possibly be said to be long. . .’ and ‘. . . the present. . . has 
no duration’. 
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Angle is a unique quantity in that the international standard is, in principle, 
absolutely accurate. Calling that standard angle any one of 360°, 400grad or 27r 
radians is a matter of units?. Then, as the numerical measure of an angle depends on the 
size of the basic unit, it must have a dimension. Therefore, as for linear motion 

F = gom(d2s/dt2), 

where go is a units conversion factor, then so for angular motion, 

F .  1 =PogoI(d2P/dt2) 

where Po is the units conversion factor for angle. A defining relation for PO would then 
be 

s / r  =Po% 
where s and r are respectively the perimeter and radius of a sector of a circle subtending 
the angle a. 

The necessity for the introduction of Po into dimensional analysis can be seen in 
Taylor’s example of the loading of a frame. Taylor puts the deflection, 8, as a function of 
the load, W, upon a triangular frame whose shape is controlled by two angles of the 
triangle, P and y, and whose size is measured by the length of one side 1. The further 
variables are the cross-sectional area of the members, A,  and Young’s modulus, E. 
Then, assigning a dimension to angle, Taylor obtained 

S p  W A  4(i ,-  y , l 2 E ’  - -)=o l 2  

which, as he pointed out, is incorrect. By introducing the units conversion factor, Po, 
the extra group pop necessary to resolve Taylor’s difficulty is obtained. We conclude 
that angle must be assigned a dimension, with its appropriate units conversion factor, so 
that, for the purposes of dimensional analysis, there is no reason for th.is quantity to 
have a subsidiary ranking in a system of units such as in the SI one$. 

Another quantity is now considered in the same way; it is the amount of substance 
measured in moles. This molar quantity is introduced from the relations for gases; 
those that have to be accounted for in a dimensional analysis are: 

P I P  = (RIMo) T, ( 2 )  

m = MOA,, (3) 

Am = IINa, (4) 

By assigning [ m ]  = M then§ the dimensions of k B  are, from equation (6), 

[kB] = ML2T-28-’: (7) 

+ Philosophically, the last of these is the least preferable as indeterminancy of the unit is fixed by the 
indeterminancy of T. 

$There has been a proposal that the measure of area should involve that of angle (Page 1967). Our 
preference for its definition is given at the beginning of this section. 
D We use Taylor’s notation that [] =means ‘is dimensionally identical’. 
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Also, from equation (2), 

[RIM01 = L2T-28-1 

From equations (3), (4) and ( 5 ) ,  

k d m  = W M O ,  (9) 
making these equations dimensionally consistent with equations (7) and (8). 

n, then assigning 
If the amount of substance is introduced as a fundamental quantity, and denoted by 

[Nn] = n-' (10) 
as required by the physical concept of Avogadro's number and by the definition of 
amount of substance, it follows that from equation (4) 

[ A m I = n ,  
so that the so-called unit atomic mass does not have the dimensions of mass per unit 
reference particle. Further, the molecular mass has, from equation (3), the dimensions 

[MO] = Mn-', (11) 

[RI = ML2T-28-'n-1. (12) 

so that it is not purely a numerical factor; it has dimensions. Then, from equation (3, 

An illustration of the need of the introduction of the amount of substance comes 
from the following example of the use of dimensional analysis to derive the expression, 
given by the kinetic theory of gases, for the thermal conductivity A. 

In the first instance, one writes 

A = A  (N, l,, E, m ) ,  (13) 
where N is the number of molecules per volume unit, I, is the molecular mean 
free-path, E the mean speed, and m the mass of a molecule as before. However, the 
continuum definition of A involves temperature as a unit, so that a units conversion 
factor has to be introduced into equation (13). Equation (2) is the defining relation for 
the numerical scale of temperature. Then, if the appropriate units conversion factor is 
chosen as R,  if no account is taken of the dimensions of molar quantity, and if MO is 
assigned zero dimensions, successive use of equations (3), (4) and ( 5 )  gives [RI= 
L2T28- ' .  Consequently the incorrect result is given by dimensional analysis as t  

A/mRENl, = constant, 

which by equation (9) is equivalent to 

A/Mok&Nl, = constant. 

The correct result from kinetic theory is 

A/kBENl, = constant. (14) 

If the amount of substance is introduced as an extra primary quantity and the molecular 

'r The step whereby two Il groups are reduced to this one is discussed in another manuscript, but is basically a 
physical supposition that, other things being fixed, A oc N. 
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mass MO as an extra variable into equation (13), a single group is obtained again, now as 

AMo/mREN1, =constant, 

which by equation (9) is equation (14), the correct result. 
Equation (14) can be obtained directly if ,  noting equation (6), kB is added to 

equation (13) as the units conversion factor for temperature rather than R. This could 
be advantageous in avoiding the need for the use of the amount of substance required in 
this example. There is another reason shown by this example for preferring kB as a 
measure of the units conversion factor rather than R ; for the latter is then introduced 
together with MO and m as variables, whereas equation (3) shows that the last two are 
not independent. Equation (14) could also be obtained if the quantity RIMo is taken as 
the units conversion factor for temperature, but this is not considered a suitable 
proposal because RIMo is not a universal constant. 

Thus kB can be adopted as the units conversion factor for temperature and 
subsequently R becomes the units conversion factor for amount of substance. 
Consequently, use of R in analysis is interdependent on use of amount of substance as a 
primary quantity. 

4. Choice of variables 

There are examples in the literature that give an appearance of relying, for the choice of 
variables, more upon a prior knowledge of the answer than upon a basis of physics. This 
fault appears for two reasons. One is a failure to state the analytical approximations 
that control the choice of independent variables, and the other is in choosing variables 
that are not obvious from a first assessment of the physics of a phenomenon. The 
following examples illustrate this. 

The first is the derivation of the relation for the force on a body immersed in a steady 
uniform stream where the fluid is incompressible. In specifying the variables of the 
problem the approximation inherent in the governing equations must be observed. 
These variables are p ,  p, p, g,  and the velocity U, whilst the size of the system is indicated 
by 1. The approximations imply that p and p are constant throughout the flow and equal 
to their boundary values. The other boundary conditions are p o  and U whilst p and F 
are alternative dependent variables. Thus the force can be expressed as 

(15) F = m o ,  P, F ,  U, 1, g ) ,  

which leads to 

Considering the first independent non-dimensional group, this must be included for the 
correct general result; the streamwise force on the external surface of a gas turbine 
nacelle i s  a function of the absolute pressure when the inlet and outlet areas are 
unequal. The independence of absolute pressure is generally valid only for a closed 
body. To demonstrate this we must refer to the physics. In the governing momentum 
equations (Sabersky and Acosta 1964), the pressure appears only as a gradient and so 
the velocity distribution is independent of absolute pressure p o ,  and then so also is the 
distribution of shear stress; for a closed body, the surface pressure integral for the force 
is then independent of the absolute pressure because over this closed surface the 
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appropriate integral of p o  is zero. Only then can this first non-dimensional group be 
excluded. 

The third non-dimensional group is a measure of the effects of weight force. But, 
such are the governing equations that in them the effects of gravity can be incorporated 
into the pressure term (Sabersky and Acosta 1964), so that this non-dimensional group 
can also be excluded; but there is a proviso. If the boundary conditions are not fixed, so 
that, as with a free-surface to a liquid, the boundary shape is itself a function of the 
imposed flow, then such boundary conditions require the retention of the third 
non-dimensional group. 

Hence the present thesis is that a final reduction of equation (15) to -=f(!-y) F 

requires the foregoing discussion of its limitations; it is not acceptable merely to state a 
priori that 

F = F(P, P, U, 1). 

The second reason given at the beginning of this section is illustrated by the following 
example. It is the incompressible flow along a pipe of diameter d and length L, for 
which the pressure change, Ap, is given by 

AP = F b ,  P, uo, d, L ) ,  

where U0 is the velocity on the centre-line of the pipe. Thus 

f(&d, $) , 
P U0 CL 

For that portion of the flow well away from the entry to the pipe, physical arguments 
show that A p  will be proportional to L. Thus 

A further limitation is to specify laminar flow in which all the streamlines are then 
straight and parallel and so all particles of fluid are in unaccelerated motion. Thus 
density can be excluded as a variable, so that equation (16) reduces to 

- -- -constant. 
Ap d 2  
L ‘PUO 

If there is interest in the rate of mass flow through the pipe, it is recognised that the mass 
is then used to represent a quantity of material. This is a far more common practice 
amongst engineers than chemists as the latter make use of a quantity measure in units of 
the mole. So, considering a volume flow rate Q, the density p can still be excluded, 
giving 

Q =f (Uo ,  4 P )  

or 

U/ U o d 2  = constant, 
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and p does not appear. If required, the velocity U. can be eliminated by equation (17) 
to give 

Ap d 4  
L 'ELQ 
- = constant. - 

As the mass flow rate, m, is equal to p Q ,  this latter equation can be rewritten as 

- -= pd4 constant. 
L 'priz 

Difficulties that have arisen in the literature in deriving this relation by inclusion of 
m in the original list of variables would not arise were the amount of substance rather 
than the mass to be used. This seems a clearer approach than the concept that has been 
advanced in the past of using a second unit of mass for the measurement of quantity of 
material. 

5. Vectorial equality 

The previous example was given for another reason. It has been derived in the 
literature by purporting directional characteristics to certain variables. But this, like 
many other similarly treated examples (Cibbings 1974), can be derived without 
ascribing such characteristics. Some authors have allocated directional characteristics 
to lengths where the normal vector concept is not applicable (Guggenheim 1942, p 
495). But some such examples as have been proposed are open to question; even the 
simple one by Guggenheim concerning railway lines (tracks) is not acceptable were one 
to be interested in the total length of wood comprising the sleepers (ties). 

The motion of a projectile under gravity is an example where, commonly, authors 
(e.g. Huntley 1952) have proposed the use of more than one length dimension to take 
account of directional characteristics. What has to be recognised in this problem is that 
the equations of motion in the vertical and horizontal directions are uncoupled; that is, 
they do not have to be solved simultaneously but can be solved successively for the two 
unknowns, t the time and then R the range of flight: this then directly effects the choice 
of what are truly independent variables. So, for the vertical motion?, 

giving 

Then for uo = 0, t 2 g / h  = constant or for h = 0, t g / vo  = constant. Subsequently, by 
putting 

R = R(t, u O )  

we obtain 

uot/R =constant. 

i Even in undergraduate texts the student is not told why the mass is excluded as a variable. 
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Finally, for U,-, = 0, R2g/uEh =constant or for h = 0, Rg/uovo = constant. Again the 
advocacy of directional characteristics is made unnecessary by a consideration of the 
analytical approximations implied in an answer. An example is that of the twist of a bar 
of rectangular cross-section due to the application of a torque. Expressing the angle of 
twist, a, as a function of the applied couple C, the cross-section dimensions a and 6, the 
length I, the shear modulus G, and Young’s modulus E, requires only the two 
dimensions of length and force. Then 

and this is the exact solution. It can be reduced further only by introducing approxima- 
tions into the model of the phenomenon, and certainly not by dimensional analysis 
alone. These approximations are 

1. Whilst still within the elastic range, large deflections are excluded so that a a C. 
2. There are no end effects inherent with large deflections, so that a a 1. 
3. For small deflections, and when a /b  is not very small, the problem becomes one 

of pure shear so that E can be excluded. This then reduces equation (18) to 

cvGa4/Cl = f(a/b),  (19) 

where the analytical elastic solution gives the function as an infinite series 
(Timoshenko and Goodier 195 1). 

There seems no justification for deriving equation (19) by assigning directional charac- 
teristics to certain variables instead of, as here, introducing the above approximations 
inherent in this result. 

6. The choice and number of units conversion factors 

Bridgman was really the first properly to face the difficulties over the use of universal 
physical constants in dimensional analysis, giving a stimulating discussiorl (Bridgman 
1943) where others had so often ignored this problem. Later, general comments will be 
made upon primary quantities and universal constants. The following examples in this 
section are intended to supplement the discussion of § 3 and to lead to the general 
position. 

In the problem of heating under forced convection by a compressible flow, all the 
equations are simultaneous, so that the independent variables appearing in the govern- 
ing equations that control the velocity field become 

=f(u,  PO, po, 1, G, R, MO, hot Tw, To) (20) 

where the second coefficient of viscosity, that appears in the stress equations for 
compressible flow (Sabersky and Acosta 1964), is taken to be directly proportional to p. 
This results in the six non-dimensional groups 

These can be rearranged as 
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Alternatively the dependent group can be the Nusselt number, Nu, which is 

N u s  Q/ i2 (Tw-  To). 

Two questions arise from this example which appear not to have been posed before; the 
first concerns the omission of kB from the list of variables in equation (20) despite it 
being the units conversion factor for temperature. In fact it does not appear in the 
equations as normally written. These contain R and MO in the combination RIMo;  
however, 

R/Mo= kBlm, 
so that R could be replaced by kB whilst MO would then be replaced by m.  It would 
appear to be a less satisfactory formulation because, there being one less dimension 
required, there would be one extra non-dimensional group; however, this group is 
superfluous for the following reasons. It could be formulated as (kBpo) /Aopo13) .  By 
substituting, from first-order kinetic theory of gases, the relation 

W O  = P o & ?  

and using equation (14), 

which is a measure of a gas quantity. The total quantity of gas was excluded from the 
formulation of equation (20) for the reason given in a previous example. If it had been 
included, it could have been expressed as Nl: and so the above group would then be 
expressible as l /L; this is zero and so is excluded. 

The second question also concerns the formulation of equation (20), in that it 
contains the six thermodynamic properties p o ,  po, C,, MO, ko and To. Thermodynamic 
texts (Keenan 1957) commonly say that a homogeneous system has a state that is a 
function of only two properties; Keenan expresses it by calling such a material a pure 
substance. But in fact a full description requires the statement of at least four 
properties; two, which are not a completely arbitrary choice, to fix the thermodynamic 
state, one to determine the chemical nature of the substance and one to define the 
amount of substance in the system. In some cases even a fifth might be required to 
specify the isotope. If account is to be taken of this in the present example so that only 
three properties are needed, then it might be concluded that three can be eliminated 
from equation (20) and so three groups would go from equation (21); knowledge of 
viscous compressible flow with heat transfer makes it clear that retention of only three 
groups would give an erroneous result: the answer now follows. 

Accept firstly the proposition that each of C,, Ao,  and TO is separately written as a 
function of p o ,  po, RIMo and k B :  it is necessary to combine R with the property MO in 
this way to enable cancellation of the quantity dimension, whilst kg is used as the units 
conversion factor. Then the three relations lead to the three results 

CJvfoIR =constant, 

C,po/Ao = constant 

and 
3 4 2  TopokBR/Mopg = constant. 
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These three results are not universally valid for all gases, only specifically so in a way 
that is not inherent in the governing equations represented by equation (20). The usual 
specific form of the set of equation (20) contains more than three properties; but those 
equations form an incomplete statement; the full set of equations would include ones 
such as CL = CL ( p ,  T, MO, R). 

The final answer then is that the statement of equation (20) contains a surplus of 
truly independent variables because it is really a set of simultaneous equations, solution 
of which would eliminate the superfluous thermodynamic properties; but no matter, 
dimensional analysis gives the desired form as equation (21). Further, equation (21) 
contains only the required number of three thermodynamic properties, which are 

Y, Pr, lMa/Re, 
the other quantities being boundary conditions. 

Making an approximation to incompressible flow results, as for previous examples, 
in an uncoupling of the equations; this time the energy equation is uncoupled from the 
kinematic ones. Thus the velocity field is given by 

41 U = f ( P u l l P o ) ,  (23) 
in comparison with set (21). Then, for the temperature as the dependent variable, 
inspection of the energy equation and its boundary conditions shows 

T =f(Cu, PolP, U, To, Tw, PIP ,  A o l P ,  0. 

PIPU2 =f(PU1IPo), 

(24) 

Now correspondingly to equation (23), 

so that p / p  is superfluous in equation (24). Also, as only temperature differences 
appear in the energy equation, equation (24) reduces to 

( T -  To) =f(cu, PoIp, U, (To- Tw),  AoIp, 0. (25) 

The I1 theorem reduces this to the four groups 

A final approximation, commonly made, is to neglect the term in the energy equation 
represented by the dissipation function. This is found to be equivalent to neglecting the 
last group in equation (26); thus, 

The interesting feature of equation (25) is that the use of RIMo as a units conversion 
factor is not required because, as a result of the approximations made, the terms that 
remain in the energy equation each have a single dimension in temperature, so that 
effectively RIMo divides out. This is not so for equation (20). 

This then is the basis of the Rayleigh-Raibouchinsky problem (Rayleigh 1915, 
Raibouchinsky 1915). Raibouchinsky was not entitled to put RIMo equal to unity, so 
as to express temperature in mechanical units, as RIMo had already been removed by 
the approximation inherent in equation (27). This is something more rigorous in its 
explanation than for instance Sedov's proposal that the units conversion factor J is 
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insignificant (Sedov 1959). Had Raibouchinsky tried his same procedure in the set of 
equation (20) he would have had no difficulty; the resulting number of non-dimensional 
groups would have been unchanged. It can be shown that the extra group that 
Raibouchinsky obtained is just an expression of the definition of density. 

A further example, that of electrostatic streaming current, is directly comparable 
with that of forced heat convection. Again, because the electrical forces are so small, 
the mechanical and conservation of electric charge equations become uncoupled 
(Gibbings 1967). In that case, the units conversion factor F,, the Faraday, is eliminated 
from the non-dimensional groups provided the boundary conditions are expressed 
analogously to those in the heat transfer case, that is in terms of a potential. 

A simpler and well-discussed case analogous to that just considered is the one where 
the base units of work and heat are often set identical so that correspondingly the units 
conversion factor, J, is made dimensionless and put equal to unity. In dimensional 
analysis this results in the loss of a primary quantity, the unit of heat, and the 
corresponding loss of a variable, J, and so the number of dimensionless groups remains 
unchanged. But a requirement for doing this is that, in the problem, both mechanical 
and thermal effects must be accounted for. 

7. Relation between primary quantities and units conversion factors 

Several writers have in effect suggested that the number of primary quantities is one 
more than the number of primary units conversion factors, so that the dimensions of all 
quantities can be reduced to one primary quantity. In fact Buckingham suggested this 
in a little-known response (Buckingham 1915) to the Rayleigh-Raibouchinsky dis- 
cussion previously mentioned. Later writers (e.g. Wilson 1942) have repeated the idea, 
though without reference to Buckingham. 

The total number of primary quantities and hence, by the above principle, the total 
number of primary units conversion factors is, to some extent, arbitrary. For example, 
it has long been the practice to assign the value of unity to go and J. It seems that the 
commonest form of present practice is to use the primary quantities 

M, L, T, e, A, c, E ,  a, 

so that a set, totalling one less, of corresponding primary units conversion factors can 
be, respectively, 

Y, hp,  k g ,  EO, PO, R, Po.  

It seems then that all other quantities that could also be regarded as units conversion 
factors can be expressed in terms of this set. Hence this particular selection of factors is 
an arbitrary one, though the total number is not, once the number of primary quantities 
has been chosen. 

We now make the following proposal that, in part, has been illustrated by the 
previous examples. Philosophically, in any real phenomenon, to have absolute pre- 
cision of understanding, all possible physical phenomena must be accounted for. This 
would require the use of all the above primary quantities and all the above primary units 
conversion factors. 

This proposal can be amplified as follows. Forget, for a moment, practical consi- 
derations which require an approximate modelling of a real event in order to make it 
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tractable; but consider the most general position as follows: 
1. Real events on a continuum scale must be influenced to some degree by all 

physical phenomena. 
2. Therefore all primary quantities arising from the analytical expression of all 

these phenomena will appear in the variables governing the complete event. 
3. Therefore all the primary units conversion factors associated with all the primary 

quantities will have to be included as variables. 
4. The number of primary quantities is of arbitrary choice; the number of primary 

units conversion factors is one less. 
5 .  The minimum number of primary quantities that can be used is one; the one to be 

used is of arbitrary choice. 
(1) to ( 5 )  above imply the following corollary: 
Suppose that another ‘fundamental’ relation-like for example Newton’s law of 

gravitation, F = ymlmz/12-is discovered, with its corresponding primary units con- 
version factor-in this example y. Then either: 

(i) we would have no primary quantity left for measurement; all that would be left 
to science would be counting; 

or 
(ii) we would have discovered a completely new primary quantity with its own unit 

of measurement and not related to any existing physical concepts except 
through its primary units conversion factor. 

The practical study of a phenomenon requires, as already stated, approximate 
modelling, and hence not all physical phenomena are to be accounted for. Then only 
the appropriate quantities, and the units conversion factors corresponding to those that 
are primary quantities, will be included in the variables. The mode of procedure has 
been touched upon in the preceding examples and has been discussed at length 
elsewhere (e.g. Taylor 1974, Pankhurst 1971). 

Thus the number of primary quantities and conversion factors to be used in a 
problem of dimensional analysis is not an arbitrary matter, but is strictly controlled by 
the approximations introduced in the modelling of the true physical event. 

8. Listing of proposals 

In the present paper, the following points are proposed as matters of basic principle in 
dimensional analysis. 

(a) A distinction is made between the basic definition of a quantity and that of its 
measure, resulting, for example, in a definition of time that appears to resolve 
philosophical difficulties. 

(b) Units conversion factors are laid down for angle and for amount of substance, 
and it is proposed that for the purposes of dimensional analysis these quantities 
are on a par with the primary quantities of the SI system. 

(c) The importance of accounting for governing equations being uncoupled is 
demonstrated: this is proposed as a valid technique for use in dimensional 
analysis, to be preferred to the assigning of directional characteristics. 

(d) Attention is drawn to the importance of recognising that many results in the 
literature that are purported to be derived using dimensional analysis rely in 
addition upon the imposition of approximations in the analysis. 

(e) The thermodynamic limitation to the number of properties sufficient to define a 
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state is reconciled to the specification of a greater number for dimensional 
analysis. 

(f) A resolution of the Rayleigh-Raibouchinsky problem is advanced. 
(g) A statement of general principle is made concerning the number of primary 

quantities and the corresponding number of primary units conversion factors to 
be used in dimensional analysis. 
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Notation 

Primary quantities : 

M mass 
L length 
T time 
0 temperature 

A current 
C light intensity 
n amount 
cy angle 

Symbol Section Meaning Symbol Section Meaning 

a 3 
a, b 5 
A , B  3 , 5  
A0 3 
A m  3 
C 3 , 6  
C 5 
C" 6 
d 4 
E 335 
F 3,475 
FA 6 
f i  495 
go 3 
G 5 

Area, amplitude 
Cross-section dimensions 
Area, Vectors 
Units conversion factor 
Unit atomic mass 
Mean velocity 
Couple 
Specific heats 
Pipe diameter 
Young's modulus 
Force 
Faraday constant 
Gravity acceleration 
Units conversion factor 
Modulus of rigidity 
Height 
Planck constant 
Units conversion factor 
Boltzmann constant 
Length 
Mean molecular path 
Size of flow 
Pipe length 
Mass, mass of molecule 
Mass rate 
Mach number 
Molecular mass 

Na 3 
Nu 6 
P 3 
Po 4 
Po I 

AP 4 
p,  6 
9 6 
Q 4 
Q 6 
r 3 
R 3 , 5 , 6 , 7  
Re 6 
S 3 
t 335 
r 3 
TO 6 

W 3 

Concentration of 
molecules 
Avogadro's number 
Nusselt number 
Pressure 
Stream pressure 
Mechanical equivalent of 
light 
Pressure drop 
Prandtl number 
Velocity 
Flow quantity 
Heat rate 
Radius 
Gas constant, range 
Reynolds number 
Distance 
Time 
Tension, temperature 
Boundary, stream 
temperature 
Wall temperature 
Velocity 
Centre-line velocity 
Horizontal, vertical, initial 
velocities 
Load 
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Symbol Section Meaning Symbol Section Meaning 

a 3 ,5  Angle A 
P 3 Angle, thermal expansion A. 

coefficient 
P O  3 , 7  Units conversion factor for p 

angle PO 
Y 3 ,6 ,7  Angle, gravitational 

constant, ratio of specific p 

heats, deflection Po 
E O  7 Permittivity of space 

3 Thermal conductivity 
6 Stream thermal 

conductivity 
4 Viscosity 
2 ,6  Magnetic permeability of a 

3 , 4  Density 
6 Stream density 

vacuum, stream viscosity 
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